
Overview- Big Data Applications
VM and Container

Csci 5980- Spring 2020

Evolving Applications and Infrastructures

Mainframe
(1980s)

Terminal Access

Multiple Distributed
Servers (1990s)

Desktop Applications

Large Individual
Servers (1990s,
2000s)

Client-Server
Applications

Multiple Distributed
Servers (2000s)

Web Applications

High-density Server
Farms (2000s)

Internet Applications

Virtualized and
Cloud (2010s)

Cloud Applications

A Look at Virtualized and Cloud Infrastructure

Client Architecture

Application

Network SVC

Storage SVC

Compute SVC

Internet

Cloud

Computation:

Network:

Storage:

Powerful Units

Large Scale

Virtualized (VM)

Large (10K-

100K switches)

On I/O path

Software

Defined

Heterogeneous

(HDD,SSD,SMR)

High capacity

Distributed

Containerized

What’s the impact on data access
performance?

Virtualization and Containerization

Hardware

OS

App

Hardware

Hypervisor

VM

App1

OS

VM

App2

OS

…
VM

App3

OS

Container

App1

Hardware

OS

Docker

…
Container

App2

Virtualization: more and more lightweight

Emulation of a
computer system

Unit of software that packages up
code and all its dependencies into a
single object

E.g., VDI

Network in Storage

...

Storage Server

Network Attached Storage (NAS)

Storage Area Network (SAN) or

Internet

Network is involved in data access

Impact to Data Access Performance

• Data access in VM

 Applications run in VMs. Data are stored in data center.

 People can access data from anywhere at anytime.

 How are storage allocated?

 What are the storage requirements for such applications?

• Data access in Docker container

 What is the current storage support for containerized applications?

 How to allocate storage & manage storage based on users’ requirements?

• Data access over network

 The dynamic network results in long I/O path and increased end-to-end
management complexity.

 A systematic view of client, network and storage is essential to improve data
access performance.

Hyperconverged
Infrastructure

A Typical Data Journey
• Data collected & transformed to

different formats & offloaded to large
scale distributed storage systems

• Simultaneously, through IoT and other
event monitoring capabilities, collected
data & real-time streamed data based
on current events will be delivered to a
large memory-based computing system
to be analyzed (in-memory processing).

• Deep learning based AI & machine
learning approaches will assist data
analytics to support optimal decisions

• The original data as well as the analytic
results are to be archived for future uses

Goal: Data Processing → Information Retrieval →
Knowledge Generation & Decision Making

+
White-Box Effect (Learned from Cloud Computing)

+
Open Source Effect

IT Infrastructure is Transforming

Hyperconverged Infrastructure: Seamless integration of
compute, network & storage in a distributed environment like

the Internet

• We believe hyperconverged infrastructure (HI) is promising for the future Internet.

• In a hypercoverged infrastructure compute, storage and network are consolidated and
fully integrated to support big data applications with increased efficiency, broad
scalability, improved agility and reduced costs.

• Although hyperconvergence enables us to investigate the interactions between
compute, network & storage, to realize all benefits, we need to leverage technology
improvements of each component:

• New architectures, Non-Volatile memory, VM & Containers for server compute.

• Development of new optical networks, 5G cellular system, NFV (Network Functional
Virtualization) & software-defined network for switches & routers.

• Software-defined Storage, I/O stack revamping, multi-tier storage, long-term data
preservation

Data Deduplication

Backup and Data Deduplication

Source: https://www.channelfutures.com/uncategorized/file-based-image-based-backup-selling-the-differences Source: https://www.maximizemarketresearch.com/market-report/data-backup-recovery-market/875/

7.13B

11.59B

14.90B

• Data deduplication is a very important technique in backup systems to efficiently reduce storage space utilization

• Due to the data content duplicates, a large portion of the data in different backup versions from the same backup
source are the same. It is also true for data from different source (e.g., VM backup).

• After deduplication, some backup products can achieve 90% or even 95% more space saving

https://www.channelfutures.com/uncategorized/file-based-image-based-backup-selling-the-differences
https://www.maximizemarketresearch.com/market-report/data-backup-recovery-market/875/

What Is Data Deduplication?
Data deduplication is a process to eliminate the redundant data content. Different from data compression (bytes
level), data deduplication reduce the block/chunk/file level duplicates

Original Data

Data

deduplication

Metadata
(recipe)

Deduplicate
d Data

Data Deduplication/Restore and Related
Studies

Chunking
Chunk ID
Generating

Chunk ID
Searching and
Updating

Data Chunk
Store

Metadata
Store

Data Restoring

Fixed size chunking [FAST’02]
Frequency based chunking
[MASCOT’10]
Bimodal CDC [FAST’10]
P-dedup [NAS’12]
FastCDC [FAST’16]
CDC for cloud dedup [FGCS’17]

……

DDFS [FAST’08]
iDedup [FAST’12]
Primary deduplication [FAST’12]
Secure Dedup [WSSS’14]
Dedup tradeoffs [FAST’15]

……

Sparse indexing [FAST’09]
Extreme binning [MASCOT’09]
ChunkStash [ATC’10]
SkimpyStash [Sigmod’11]
SiLo [ATC’11]
Progressive dedup [FAST’12]
BloomStore [MSST’12]
……

DDFS [FAST’08]
Reduce fragmentation [ISSC’12]
FAA & Capping [FAST’13]
Historical based caching [ATC’14]
Dedup design tradeoffs [FAST’15]
Cost-effective rewrite [MSST’17]
……

Why Improving Restore Performance Is
Important?

HDD

Chunk-based I/O
• After deduplication, the data chunks of original data are scattered in

the whole storage system [high data fragmentation]

• Reads and writes consume high seeking time [low read and write
efficiency]

Why Improving Restore Performance Is
Important?

HDD

Chunk-based I/O
• After deduplication, the data chunks of original data are scattered in

the whole storage system [high data fragmentation]

• Reads and writes consume high seeking time [low read and write
efficiency]

Container-based I/O
• After deduplication, the data chunks of original data are scattered in

the whole storage system [high data fragmentation]

• When one or a small number of chunks are needed in one container,
the whole container needs to be read out [read amplification]

…

…

 byte stream

FP(W) modulo

(Divisor)

== r?
True

Falseset

chunkpoint

C1 C2

 ……

…… Ck

Moving forward

Window

W

Move fwd

Overview of Chunking Algorithms

• Fixed-sized Chunking

• Content-Defined Chunking

3

MASCOTS/Storage 2010

After
chunking c1 c2 c3

ID1 ID2 ID3

chunk list

ID1 loc(c1)

ID2 loc(c2)

ID3 loc(c3)

… …
Index table de-duplicated

chunks (stored in
chunk store)

c1

c1 c3

ID1

c2

Data Structures Associated with
Chunking Deduplication

4

MASCOTS/Storage 2010

Dedupe Research Topics

• Read performance optimization

• Dedupe reliability

• Dedupe for checkpointing

• Scalable VM cloud storage

• Emerging storage hierarchy

• Checkpoint storage for exascale computing

19

I/O Access Hints
and

Multi-Storage Pools

Legacy I/O Stack w/ I/O Access Hints

Legacy I/O stack problems
• To adapt HDD, big performance gap (HDD vs. memory)

• Enterprise storage system=> multiple apps, parallel I/Os

• Many layers without proper coordination (app, vfs, fs, lvm…)

• Homogeneous fixed-size logical block address

I/O Access Hints in Hybrid Storage Systems
• A piece of tiny but useful information on top of block storage (e.g. stream ID, file metadata)

• Data management across diverse devices (data migration, data placement, space allocation, etc)

• Not like page level management (fadvise(), ionice())

21

The Challenges of I/O Access Hints

Industry (e.g.Intel, NetApp) has several standardization
proposals based on T10/T13 without real outcome

- Many stakeholders

To add and apply hints, different layers may require
tedious modifications
- Kernel level modification (block level management, file systems)

- May involve application level revision

22

Goal of HintStor => A flexible framework to study I/O access hints
in heterogenous storage systems

Device Mapper in HintStor

Kernel

Userspace

Device Mapper

libdevmapper

dmsetup

Registering target
device (ioctl)

Creating dm_table

dm_target -> dm_devices

Storage policies

Devices
1. Separate storage policies for different configs
2. Separate interfaces from storage engines

Prerequisite of HintStor
Two new drivers in Device Mapper

Redirector
The target device (bio->bdev) can be reset to the desired
device

Migrator
Using the “kcopyd” policy to copy a fixed-size chunk (a set of
blocks) from one device to another device

• 600~ LoC C code in Linux kernel

Block Storage Data Manager

• Fixed-size chunk mapping table (1MB or more)

• Chunk-level I/O analyzer
- Monitor

- Heatmap using Perl scripts

• Access hints atomic operations (op, chunk id, src addr, dest addr)

- REDIRECT

- MIGRATE

- PREFETCH

- REPLICATE

25

• Prototyping in Ubuntu 14.04 (Kernel version, 3.13.0)

HintStor Framework

Hybrid Local

Storage Cloud Store

Hybrid Storage Controller

File Systems (EXT2,3,4, btrfs)

Applications

fs I/O
userspace

kernel

User Level Hints Controller

Fs hints extraction

(fs ioctl)

device ioctl

Block stats based migration scheme

Advised or partially guessing

Migrate up

Migrate down

bio/VFS-based

User Level API

System monitor

Block Level Hints Controller sysfs API Heat Map

FS_HINT

Active Migrator
(Access Pattern Detection (hints & heat map & network))

Heat Map Tool

A Typical Tiered Store HintStor with Access Hints

ChewAnalyzer Framework

• Data Path

• Chunk-level mapping table
• Logical chunk number to

physical chunk number

• Current data location
• <Physical chunk number,

Offset>

27

I/O Monitor

Hierarchical Classifier
(I/O pattern taxonomy rules)

Chunk Placement Recommender
(Pattern-to-Pool Chunk Placement Library)

Storage Manager
(Chunk Placement Decisions)

Pool 1 Pool 2 Pool n

I
/
O

F
e
e
d
b
a
c
k

Incoming I/O Requests

P
o
o
l

S
t
a
t
u
s

ChewAnalyzer

ChewAnalyzer Framework

• Control Path

• I/O Monitor
• Update I/O information of relevant chunk

• If time window is full, for all chunks
• Hierarchical Classifier for pattern detection

• Chunk placement recommender

• Predefined referential Pattern-to-Pool
library

• Chunk relocation decision maker

• Current status of each storage pool

28

I/O Monitor

Hierarchical Classifier
(I/O pattern taxonomy rules)

Chunk Placement Recommender
(Pattern-to-Pool Chunk Placement Library)

Storage Manager
(Chunk Placement Decisions)

Pool 1 Pool 2 Pool n

I
/
O

F
e
e
d
b
a
c
k

Incoming I/O Requests

P
o
o
l

S
t
a
t
u
s

ChewAnalyzer

Network Re-Design: Software-Defined Networks

Proposed SDN Solution

Control Plane

Data Plane

Standard API to
Enable

Programmable

Separation of
Control Plane and

Data Plane

Logically
Centralized
Controller

Open API

Goals of Using Software-Defined Networks

• How to Use White-Box Switches and Re-Programmable
Routers?

• Integrating Required Network Functions (NFV) with Data
Storage Using Docker Container

• Creating A Unified Management Platform for Compute,
Network, and Storage

• Supporting Data Analytics and Decision Making with
Integrated Hyperconverged Infrastructure

Platform for Big Data Analysis
and Its Performance Evaluation

Understand the
workloads in storage
systems of big data

Key value store workload
characterization of big
graph in Facebook

Background and Motivations

• Key Value Store (KVS). is more and more widely used by applications as
backend storage for structured/unstructured data, or even supporting file
system

• RocksDB is a flash adaptive high performance KVS

• Existing studies about how to collect, characterize, and model KVS
workloads is limited

• People has limited understanding of the workload in storage layer that
supporting the big data.

Rocks DB

File System

SSD SSD ……SSD SSDSSD

MySQL

Disk monitoring

& tracing

File system

tracing tools

Perf statistics and

other monitoring

methods

DB or other

application level

monitoring and

tracing tools
How about the

queries to

RocksDB?

Current Contributions and Future Direction
• Propose the tracing and trace analyzing methodologies

for key-value store

• Model the workload and develop a real-workload like
workload generator for key-value store developers to
evaluate and optimize the storage engine

• Help us to understand the workloads of key value store
which supports the largest big graph in the world

• How to construct efficient big data platform for data
analytics and big graph processing (future work)?

Integrating SDN with Distributed Data Storage

Existing KVS

• Distributed Key-Value Store for Collecting Data from IoT and Big Data
Applications

• Query Distributed Key-Value Store without Using Meta-Data Servers

Research Goal:

• How to Efficiently Store, Manage, and Access Data from KVS?

SDKinetic: A Software Defined

Kinetic-Based Key-Value Store using The

Programmable Switch and P4

Programmable Switches and P4

P4 is a high-level language for programming protocol-independent packet
processors designed to achieve 3 goals.

• Protocol independence.

• Target independence.

• Re-configurability in the field.

Think programming rather than protocols…

PISA: Protocol-Independent Switch Architecture

Programmable

Parser

Programmable

Deparser

Programmable Match-Action Pipeline

Programmer declares the
headers that should be

recognized and their order
in the packet

Programmer defines the
tables and the exact
processing algorithm

Programmer declares
how the output packet

will look on the wire

PISA in Action
• Packet is parsed into individual headers (parsed representation)

• Headers and intermediate results can be used for matching and actions.

• Headers can be modified, added or removed.

• Packet is deparsed (serialized).

Programmable
Parser

Programmable
Deparser

Programmable Match-Action Pipeline

Key-Value Store
• The record is represented by two attributes:

• Key (identifier): retrieve, modify, delete the record.

• Value: the data itself like files, database records, images, graphs, or
multimedia.

Traditional Stack

● All implementation is on the storage server.
● The storage server manages all the

connected HDD/SDD with multiple of legacy
layers that may introduce latency.

Kinetic Stack

kinetic drive is an independent and active device
connected to the Internet.

Our Goal
Building a Kinetic Drive or Server based large scale Key-Value Store
with SDN to satisfy user requests and to improve the performance of
the storage system by exploiting parallelism and embedding index table
in SDN

Challenges:
• Removing Metadata server

• Metadata server forms a single point of failure.
• Potential server bottleneck (All requests are sent to the metadata server for index

searching).

• How to allocate data (key-value pairs)
• Kinetic Drive has limited bandwidth (60 MB/sec) and limited size.
• Data popularity and size keep changing (fixed allocation will not be enough)

• Improving Average Response Time
• 2RTT for satisfying the request with metadata server (1 RTT for getting IP + 1 RTT for

getting data)
• Contacting multiple drives for getting the data (increase the response time)

• Cashing in Network and Load Balancing with SDN
• Reliability Issue (disk drive or switch failure)

Proposed Solution
• Use the logically centralized design in SDN to collect performance

parameters of each component

• Use the P4 switches instead of normal switches inside the distibured
network

• Build and distribute the index table as rules on the switch with match-
action table

• Using a key-range routing approach instead of the normal IP routing to
route the request from a client to the target drive without contacting any
server at the beginning to know the drive IP address

• Using the normal IP routing to route the data back from the drive back to
the client.

Ensure Application Performance with Docker
Containers by Considering Hyperconverging

Today’s Cloud Infrastructure is hyperconverged

Compute Servers

Network Fabric

Storage

Management

Virtualization is the Building Block

Virtualized Servers

Virtualized Network

Virtualized Storage

Datacenter servers

Datacenter network

Datacenter storage

Virtual Machines

Containers

Improve Application Performance in Emerging
Hyper-converged Infrastructure

App in Containers

Accessing data

Systematic control over client,
network, storage for app in

networked storage

Network Function

Virtualization

Encryption

Firewall

DNS
App in VMs

accessing data

Ability to control all resources

Resource allocation

Storage Function

Virtualization

Encryption

Backup

Analytics

What is Networked Storage

Internet

...

Network Attached Storage (NAS)

Storage Area Network (SAN) or
Storage Server

Two Research Projects

• Enhance storage support in container

- Applications run in containers in the hyper-converge
infrastructure. Propose a system that can support applications
with various storage requirements deployed in the Kubernetes
environment based on Docker containers. [Under submission]

• Improve I/O latency in the networked storage environment

- Propose a system that coordinates different components along
the I/O path to ensure latency SLO for applications in
networked storage environment. [MASCOTS’18]

Kubernetes - Distributed OS of Containers
An orchestrator is essential to deploy and manage applications in containers across
multiple hosts.

- Application scheduling

- Resource management

- Mainstream: Docker swarm, Mesos, and Kubernetes (k8s)7 [Verma et al.
EuroSys ’15, Burns et al. Queue 14, 1]

Kubernetes is the most popular container orchestration platform according to
surveys from Cloud Native Computing Foundation (CNCF) 8,9

In this research, we focus on Kubernetes environment based on Docker.

7Kubernetes concepts. https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.
8Survey Shows Kubernetes Leading as Orchestration Platform. https://www.cncf.io/blog/2017/06/28/survey-shows-kubernetes-leading-orchestration-platform/.
9CNCF Survey: Use of Cloud Native Technologies in Production Has Grown Over 200%. https://www.cncf.io/blog/2018/08/29/cncf-survey-use-of-cloud-native-technologi
es-in-production-has-grown-over-200-percent.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.cncf.io/blog/2017/06/28/survey-shows-kubernetes-leading-orchestration-platform/

Issues of Kubernetes in Storage Allocation

CPU, Mem, Affinities to
apps/nodes

Storage resources

Error-prone, not resource
efficient storage allocation

Storage allocation is static

Static Storage Allocation in K8s
• K8s allocates storage based on StorageClass (SC)

Gold
(SSD)

Silver
(Hybrid)

Bronze
(HDD)

Storage
Cluster

Admins create SCs

Users choose SCs

Limitations:
 SC is static. Storage performance is

changing
 Few SCs -> Over provisioning

Lots of SCs -> Hard to maintain
 Advanced storage requirements, e.g.,

rate limiting, caching, etc.
 Not user friendly and error-prone

How can we make k8s better meet users’ storage
requirements & all other requirements, and at the same time
save resources?

Our Contributions

We propose K8sES (k8s Enhanced Storage), a system that can dynamically
allocate storage to applications in Kubernetes based on users’ storage
requirements.

• Initial storage allocation

- Storage monitoring capabilities: performance of storage devices

- User friendly. Allow users to specify storage requirements directly in config.

- No limitations of SC. Admins don’t create SC.

- Strengthened scheduling. Select storage with other k8s related requirements

- Automatic storage provisioning based on users’ requirements

• Storage adjustment at runtime

- Storage monitoring capabilities: enforcement of storage SLOs of a pod

- Migration

• Improves storage utilization efficiency in k8s: thin provisioning, multiplexing,
balancing utilization between storage and non-storage

Pod Creation in K8sES

k8sES-scheduler

kubectl create -f app.yaml

kube-apiserveretcd

kube-controller-

manager

Migrator

Discovery

Host
Driver

... Host

kubelet kubelet

kube-proxy kube-proxy

Driver

pod pod...

Managed

Cluster

K8sES Master

Monitor

Storage
Status

Select both host and
storage for a pod

Discover the available storage
resources in the cluster

Monitor the running of each pod
and storage resource usage

The kubelet receives the storage
decision from k8es-scheduler and call
the Driver to carve out storage
resources.

Select a pod and its data to migrate

Network is Important in Data Access

Internet

Computation Services

…

Storage Services

Cloud Network Services

E.g., OpenStack (VM), Kubernetes (containers)

…

SAN

Problem and Challenges

In the networked storage environment, how can we coordinate
different components in network and storage to improve
latency SLOs for applications?

Challenges:
 Different components involved, e.g., clients, network switches,

storage servers, disks, etc.

 Status of the components are dynamically changing

 Each component performs different functions on I/Os

Our Contributions
• We identify the need to consider all the components along the

I/O path to ensure latency SLO.

• We design a controller-based mechanism to coordinate the
control on different components dynamically based on the status
of network and storage.

• We design an approach to control I/O packets with little
overhead based on the asymmetry property in read and write.

• We build a real system called JoiNS, to coordinate clients,
network, and storage, and demonstrate the effectiveness in
ensuring latency SLO.

JoiNS Architecture

Storage Driver

NIC
Kernel

APP

...

Flow
Table

NIC

 Storage Driver

...

Client Network Storage

APP...

Status
Monitor

Client
Enfocer

Flow
Table

Execute
Actions

...

Network Enfocer
Storage
Enfocer

Kernel

Time
Estimator

Policy
Enforcement

Regulator

Controller
Collect the status data of
each network and storage
node

Estimate the time needed
for each I/O request

Determine whether to
control I/Os

Refine the estimation based
on the actual latency

Admit I/Os
Mark I/O requests in
packet headers and
storage commands

Differentiated scheduling

Differentiated scheduling
Mark I/O responses

Cost-effective Control
• Distinguish Read from Write

- Based on the asymmetry property in read and write along its I/O path.

- Read requests can be prioritized on request path with little penalty.

- Write responses can be prioritized on return path with little penalty.

Client

Storage

Write
Request

Read
Request

Write
Notification

Read Data

Request
Path

Response
Path

48B

1024
KB

48B

1024
KB

